Skip to main content
Caltech Logo
CLOVER Center CLARITY, Optogenetics, & Vector Engineering
Obtaining Reagents
People
Publications
Contact
Open search form
Menu Main Menu
Close
Obtaining Reagents
People
Publications
Contact
Open search form

Summary

Bone tissue harbors unique and essential physiological processes, such as hematopoiesis, bone growth, and bone remodeling. To enable visualization of these processes at the cellular level in an intact environment, we developed “Bone CLARITY,” a bone tissue clearing method. We used Bone CLARITY and a custom-built light-sheet fluorescence microscope to detect the endogenous fluorescence of Sox9-tdTomato+ osteoprogenitor cells in the tibia, femur, and vertebral column of adult transgenic mice. To obtain a complete distribution map of these osteoprogenitor cells, we developed a computational pipeline that semiautomatically detects individual Sox9-tdTomato+ cells in their native three-dimensional environment. Our computational method counted all labeled osteoprogenitor cells without relying on sampling techniques and displayed increased precision when compared with traditional stereology techniques for estimating the total number of these rare cells. We demonstrate the value of the clearing-imaging pipeline by quantifying changes in the population of Sox9-tdTomato–labeled osteoprogenitor cells after sclerostin antibody treatment. Bone tissue clearing is able to provide fast and comprehensive visualization of biological processes in intact bone tissue.

Caltech Torch
Caltech Logo
California Institute of Technology
map marker
1200 East California Boulevard
Pasadena, California 91125
Privacy Notice Site Content Copyright © 2021 Log In